Hilbert–Poincaré series for spaces of commuting elements in Lie groups

dc.contributor.authorRamras, Daniel A.
dc.contributor.authorStafa, Mentor
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-01-17T19:05:45Z
dc.date.available2019-01-17T19:05:45Z
dc.date.issued2018
dc.description.abstractIn this article we study the homology of spaces Hom(Zn,G) of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to Hom(Fn/Γmn,G) , where the subgroups Γmn are the terms in the descending central series of the free group Fn . Finally, we show that there is a stable equivalence between the space Comm(G) studied by Cohen–Stafa and its nilpotent analogues.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationRamras, D. A., & Stafa, M. (2018). Hilbert–Poincaré series for spaces of commuting elements in Lie groups. Mathematische Zeitschrift. https://doi.org/10.1007/s00209-018-2122-1en_US
dc.identifier.urihttps://hdl.handle.net/1805/18189
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00209-018-2122-1en_US
dc.relation.journalMathematische Zeitschriften_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectrepresentation spaceen_US
dc.subjectHilbert–Poincaré seriesen_US
dc.subjectcharacteristic degreeen_US
dc.titleHilbert–Poincaré series for spaces of commuting elements in Lie groupsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ramras_2018_hilbert.pdf
Size:
229.22 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: