Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules

dc.contributor.authorYao, Xiaohui
dc.contributor.authorYan, Jingwen
dc.contributor.authorLiu, Kefei
dc.contributor.authorKim, Sungeun
dc.contributor.authorNho, Kwangsik
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorGreene, Casey S.
dc.contributor.authorMoore, Jason H.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorShen, Li
dc.contributor.authorAlzheimer’s Disease Neuroimaging Initiative
dc.contributor.departmentBioHealth Informatics, School of Informatics and Computingen_US
dc.date.accessioned2019-08-15T14:19:10Z
dc.date.available2019-08-15T14:19:10Z
dc.date.issued2017-10-15
dc.description.abstractMotivation: Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity. Results: We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationYao, X., Yan, J., Liu, K., Kim, S., Nho, K., Risacher, S. L., … Alzheimer’s Disease Neuroimaging Initiative (2017). Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics (Oxford, England), 33(20), 3250–3257. doi:10.1093/bioinformatics/btx344en_US
dc.identifier.urihttps://hdl.handle.net/1805/20370
dc.language.isoen_USen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionof10.1093/bioinformatics/btx344en_US
dc.relation.journalBioinformaticsen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAged, 80 and overen_US
dc.subjectAlzheimer Diseaseen_US
dc.subjectAmygdalaen_US
dc.subjectComputational Biologyen_US
dc.subjectGenetic Predisposition to Diseaseen_US
dc.subjectGenome-Wide Association Studyen_US
dc.subjectMachine Learningen_US
dc.subjectMiddle Ageden_US
dc.subjectMaleen_US
dc.subjectPhenotypeen_US
dc.subjectPolymorphism, Geneticen_US
dc.subjectPositron Emission Tomographyen_US
dc.subjectSoftwareen_US
dc.titleTissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modulesen_US
dc.typeArticleen_US
ul.alternative.fulltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410887/en_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
btx344.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: