Optimal nonparametric inference via deep neural network

dc.contributor.authorLiu, Ruiqi
dc.contributor.authorBoukai, Ben
dc.contributor.authorShang, Zuofeng
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-04-17T20:39:35Z
dc.date.available2023-04-17T20:39:35Z
dc.date.issued2022-01
dc.description.abstractDeep neural network is a state-of-art method in modern science and technology. Much statistical literature have been devoted to understanding its performance in nonparametric estimation, whereas the results are suboptimal due to a redundant logarithmic sacrifice. In this paper, we show that such log-factors are not necessary. We derive upper bounds for the L2 minimax risk in nonparametric estimation. Sufficient conditions on network architectures are provided such that the upper bounds become optimal (without log-sacrifice). Our proof relies on an explicitly constructed network estimator based on tensor product B-splines. We also derive asymptotic distributions for the constructed network and a relating hypothesis testing procedure. The testing procedure is further proved as minimax optimal under suitable network architectures.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLiu, R., Boukai, B., & Shang, Z. (2022). Optimal nonparametric inference via deep neural network. Journal of Mathematical Analysis and Applications, 505(2), 125561. https://doi.org/10.1016/j.jmaa.2021.125561en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttps://hdl.handle.net/1805/32459
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jmaa.2021.125561en_US
dc.relation.journalJournal of Mathematical Analysis and Applicationsen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectAsymptotic distributionen_US
dc.subjectDeep neural networken_US
dc.subjectNonparametric inferenceen_US
dc.subjectOptimal minimax risk bounden_US
dc.titleOptimal nonparametric inference via deep neural networken_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Liu2022Optimal-AAM.pdf
Size:
747.49 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: