Fast and Efficient Boolean Matrix Factorization by Geometric Segmentation

dc.contributor.authorWan, Changlin
dc.contributor.authorChang, Wennan
dc.contributor.authorZhao, Tong
dc.contributor.authorLi, Mengya
dc.contributor.authorCao, Sha
dc.contributor.authorZhang, Chi
dc.contributor.departmentMedical and Molecular Genetics, School of Medicineen_US
dc.date.accessioned2020-12-11T21:31:46Z
dc.date.available2020-12-11T21:31:46Z
dc.date.issued2020-06
dc.description.abstractBoolean matrix has been used to represent digital information in many fields, including bank transaction, crime records, natural language processing, protein-protein interaction, etc. Boolean matrix factorization (BMF) aims to find an approximation of a binary matrix as the Boolean product of two low rank Boolean matrices, which could generate vast amount of information for the patterns of relationships between the features and samples. Inspired by binary matrix permutation theories and geometric segmentation, we developed a fast and efficient BMF approach, called MEBF (Median Expansion for Boolean Factorization). Overall, MEBF adopted a heuristic approach to locate binary patterns presented as submatrices that are dense in 1's. At each iteration, MEBF permutates the rows and columns such that the permutated matrix is approximately Upper Triangular-Like (UTL) with so-called Simultaneous Consecutive-ones Property (SC1P). The largest submatrix dense in 1 would lie on the upper triangular area of the permutated matrix, and its location was determined based on a geometric segmentation of a triangular. We compared MEBF with other state of the art approaches on data scenarios with different density and noise levels. MEBF demonstrated superior performances in lower reconstruction error, and higher computational efficiency, as well as more accurate density patterns than popular methods such as ASSO, PANDA and Message Passing. We demonstrated the application of MEBF on both binary and non-binary data sets, and revealed its further potential in knowledge retrieving and data denoising.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationWan, C., Chang, W., Zhao, T., Li, M., Cao, S., & Zhang, C. (2020). Fast and Efficient Boolean Matrix Factorization by Geometric Segmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 6086–6093. https://doi.org/10.1609/aaai.v34i04.6072en_US
dc.identifier.urihttps://hdl.handle.net/1805/24607
dc.language.isoenen_US
dc.publisherAAAIen_US
dc.relation.isversionof10.1609/aaai.v34i04.6072en_US
dc.relation.journalProceedings of the AAAI Conference on Artificial Intelligenceen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjectBoolean matrixen_US
dc.subjectgeometric segmentationen_US
dc.subjectmatrix factorization problemsen_US
dc.titleFast and Efficient Boolean Matrix Factorization by Geometric Segmentationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wan_2020_fast.pdf
Size:
683.23 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: