Role of intracellular tyrosines in activating KIT induced myeloproliferative disease

Date
2012-07
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Nature Publishing Group
Abstract

Gain-of-function mutations in KIT receptor in humans are associated with gastrointestinal stromal tumors (GIST), systemic mastocytosis (SM), and acute myelogenous leukemia (AML). The intracellular signals that contribute to oncogenic KIT induced myeloproliferative disease (MPD) are poorly understood. Here, we show that oncogenic KITD814V induced MPD occurs in the absence of ligand stimulation. The intracellular tyrosine residues are important for KITD814V induced MPD, albeit to varying degrees. Among the seven intracellular tyrosines examined, tyrosine 719 alone plays a unique role in regulating KITD814V induced proliferation and survival in vitro, and MPD in vivo. Importantly, the extent to which AKT, ERK and Stat5 signaling pathways are activated via the seven intracellular tyrosines in KITD814V impacts the latency of MPD and severity of the disease. Our results identify critical signaling molecules involved in regulating KITD814V induced MPD, which might be useful for developing novel therapeutic targets for hematologic malignancies involving this mutation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ma, P., Mali, R. S., Martin, H., Ramdas, B., Sims, E., & Kapur, R. (2012). Role of intracellular tyrosines in activating KIT induced myeloproliferative disease. Leukemia, 26(7), 1499–1506. http://doi.org/10.1038/leu.2012.22
ISSN
0887-6924
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Leukemia
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}