GPU Accelerated Browser for Neuroimaging Genomics

dc.contributor.authorZigon, Bob
dc.contributor.authorLi, Huang
dc.contributor.authorYao, Xiaohui
dc.contributor.authorFang, Shiaofen
dc.contributor.authorHasan, Mohammad Al
dc.contributor.authorYan, Jingwen
dc.contributor.authorMoore, Jason H.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorShen, Li
dc.contributor.authorAlzheimer’s Disease Neuroimaging Initiative
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2020-01-02T19:06:06Z
dc.date.available2020-01-02T19:06:06Z
dc.date.issued2018-10
dc.description.abstractNeuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationZigon, B., Li, H., Yao, X., Fang, S., Hasan, M. A., Yan, J., … Alzheimer’s Disease Neuroimaging Initiative (2018). GPU Accelerated Browser for Neuroimaging Genomics. Neuroinformatics, 16(3-4), 393–402. doi:10.1007/s12021-018-9376-yen_US
dc.identifier.urihttps://hdl.handle.net/1805/21694
dc.language.isoen_USen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s12021-018-9376-yen_US
dc.relation.journalNeuroinformaticsen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectData miningen_US
dc.subjectGPUen_US
dc.subjectGenomicsen_US
dc.subjectMRIen_US
dc.subjectVersatile gene based association studyen_US
dc.titleGPU Accelerated Browser for Neuroimaging Genomicsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms959734.pdf
Size:
944.1 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: