Comparison of Multi-Sample Variant Calling Methods for Whole Genome Sequencing

If you need an accessible version of this item, please submit a remediation request.
Date
2014-10
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Institute of Electrical and Electronics Engineers
Abstract

Rapid advancement of next-generation sequencing (NGS) technologies has facilitated the search for genetic susceptibility factors that influence disease risk in the field of human genetics. In particular whole genome sequencing (WGS) has been used to obtain the most comprehensive genetic variation of an individual and perform detailed evaluation of all genetic variation. To this end, sophisticated methods to accurately call high-quality variants and genotypes simultaneously on a cohort of individuals from raw sequence data are required. On chromosome 22 of 818 WGS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), which is the largest WGS related to a single disease, we compared two multi-sample variant calling methods for the detection of single nucleotide variants (SNVs) and short insertions and deletions (indels) in WGS: (1) reduce the analysis-ready reads (BAM) file to a manageable size by keeping only essential information for variant calling ("REDUCE") and (2) call variants individually on each sample and then perform a joint genotyping analysis of the variant files produced for all samples in a cohort ("JOINT"). JOINT identified 515,210 SNVs and 60,042 indels, while REDUCE identified 358,303 SNVs and 52,855 indels. JOINT identified many more SNVs and indels compared to REDUCE. Both methods had concordance rate of 99.60% for SNVs and 99.06% for indels. For SNVs, evaluation with HumanOmni 2.5M genotyping arrays revealed a concordance rate of 99.68% for JOINT and 99.50% for REDUCE. REDUCE needed more computational time and memory compared to JOINT. Our findings indicate that the multi-sample variant calling method using the JOINT process is a promising strategy for the variant detection, which should facilitate our understanding of the underlying pathogenesis of human diseases.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Nho, K., West, J. D., Li, H., Henschel, R., Bharthur, A., Tavares, M. C., & Saykin, A. J. (2014). Comparison of Multi-Sample Variant Calling Methods for Whole Genome Sequencing. IEEE International Conference on Systems Biology : [proceedings]. IEEE International Conference on Systems Biology, 2014, 59–62. http://doi.org/10.1109/ISB.2014.6990432
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
IEEE International Conference on Systems Biology: [proceedings]. IEEE International Conference on Systems Biology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}