Quantum Toroidal Comodule Algebra of Type A(n-1) and Integrals of Motion
dc.contributor.author | Feigin, Boris | |
dc.contributor.author | Jimbo, Michio | |
dc.contributor.author | Mukhin, Evgeny | |
dc.contributor.department | Mathematical Sciences, School of Science | |
dc.date.accessioned | 2024-02-05T19:35:03Z | |
dc.date.available | 2024-02-05T19:35:03Z | |
dc.date.issued | 2022-07-07 | |
dc.description.abstract | We introduce an algebra Kn which has a structure of a left comodule over the quantum toroidal algebra of type An−1. Algebra Kn is a higher rank generalization of K1, which provides a uniform description of deformed W algebras associated with Lie (super)algebras of types BCD. We show that Kn possesses a family of commutative subalgebras. | |
dc.eprint.version | Final published version | |
dc.identifier.citation | Feigin, B., Jimbo, M., & Mukhin, E. (2022). Quantum Toroidal Comodule Algebra of Type A(n-1) and Integrals of Motion. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 18, 051. https://doi.org/10.3842/SIGMA.2022.051 | |
dc.identifier.uri | https://hdl.handle.net/1805/38316 | |
dc.language.iso | en_US | |
dc.publisher | Foundation Compositio Mathematica | |
dc.relation.isversionof | 10.3842/SIGMA.2022.051 | |
dc.relation.journal | SIGMA. Symmetry, Integrability and Geometry: Methods and Applications | |
dc.rights | Attribution-ShareAlike 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.source | Publisher | |
dc.subject | quantum toroidal algebras | |
dc.subject | comodule | |
dc.subject | integrals of motion | |
dc.title | Quantum Toroidal Comodule Algebra of Type A(n-1) and Integrals of Motion | |
dc.type | Article |