A VERY FAST CONSTRAINT SOLVER INTERPRETER FOR EVALUATING MODEL CONSTRAINTS

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-04-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Model-Driven Engineering (MDE) facilitates building solutions in many enterprise application domains through the systematic use of graphical languages called domain-specific modeling languages (DSMLs). MDE tools, such as the Generic Modeling Environment (GME) and the Generic Eclipse Modeling System (GEMS), enable end-users to rapidly create such custom DSMLs. One advantage of using DSMLs is its correct-by-construction characteristics, which is provided by domain-specific constraints defined within these custom languages. The constraints, written in Object Constraint Language (OCL), are evaluated during and after model construction using a constraint checker. For example, GME provides a Constraint Manager (CM) that evaluate the constraints defined by a DSMLs against its models. Unfortunately, our experience has shown that the constraint checkers provided by MDE tools do not scale to large models (i.e., models that have 10s of 1000s of model elements and 10s of 100s of constraints). Our research therefore focuses on developing a very fast OCL constraint solver that can address the current shortcomings of existing OCL constraint solvers in the context of GME. Our design approach leverages best practices in software design patterns, caching, and multi-threading to improve its performance and scalability. Initial results of our work show that for small models (e.g., 10s to 100s of elements), the traditional constraint solvers run slightly faster than our approach. For models with more than 1000s of elements, our approach is twice as fast, and performs exponential better as the size and complexity of the models increase.

Description
Poster and poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Arvind Nair and James H. Hill. 2016, April 8. A VERY FAST CONSTRAINT SOLVER INTERPRETER FOR EVALUATING MODEL CONSTRAINTS. Poster session presented at IUPUI Research Day 2016, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}