PINet: Privileged Information Improve the Interpretablity and generalization of structural MRI in Alzheimer’s Disease
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The irreversible and progressive atrophy by Alzheimer’s Disease resulted in continuous decline in thinking and behavioral skills. To date, CNN classifiers were widely applied to assist the early diagnosis of AD and its associated abnormal structures. However, most existing black-box CNN classifiers relied heavily on the limited MRI scans, and used little domain knowledge from the previous clinical findings. In this study, we proposed a framework, named as PINet, to consider the previous domain knowledge as a Privileged Information (PI), and open the black-box in the prediction process. The input domain knowledge guides the neural network to learn representative features and introduced intepretability for further analysis. PINet used a Transformer-like fusion module Privileged Information Fusion (PIF) to iteratively calculate the correlation of the features between image features and PI features, and project the features into a latent space for classification. The Pyramid Feature Visualization (PFV) module served as a verification to highlight the significant features on the input images. PINet was suitable for neuro-imaging tasks and we demonstrated its application in Alzheimer’s Disease using structural MRI scans from ADNI dataset. During the experiments, we employed the abnormal brain structures such as the Hippocampus as the PI, trained the model with the data from 1.5T scanners and tested from 3T scanners. The F1-score showed that PINet was more robust in transferring to a new dataset, with approximatedly 2% drop (from 0.9471 to 0.9231), while the baseline CNN methods had a 29% drop (from 0.8679 to 0.6154). The performance of PINet was relied on the selection of the domain knowledge as the PI. Our best model was trained under the guidance of 12 selected ROIs, major in the structures of Temporal Lobe and Occipital Lobe. In summary, PINet considered the domain knowledge as the PI to train the CNN model, and the selected PI introduced both interpretability and generalization ability to the black box CNN classifiers.