PINet: Privileged Information Improve the Interpretablity and generalization of structural MRI in Alzheimer’s Disease

If you need an accessible version of this item, please submit a remediation request.
Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Association for Computing Machinery
Abstract

The irreversible and progressive atrophy by Alzheimer’s Disease resulted in continuous decline in thinking and behavioral skills. To date, CNN classifiers were widely applied to assist the early diagnosis of AD and its associated abnormal structures. However, most existing black-box CNN classifiers relied heavily on the limited MRI scans, and used little domain knowledge from the previous clinical findings. In this study, we proposed a framework, named as PINet, to consider the previous domain knowledge as a Privileged Information (PI), and open the black-box in the prediction process. The input domain knowledge guides the neural network to learn representative features and introduced intepretability for further analysis. PINet used a Transformer-like fusion module Privileged Information Fusion (PIF) to iteratively calculate the correlation of the features between image features and PI features, and project the features into a latent space for classification. The Pyramid Feature Visualization (PFV) module served as a verification to highlight the significant features on the input images. PINet was suitable for neuro-imaging tasks and we demonstrated its application in Alzheimer’s Disease using structural MRI scans from ADNI dataset. During the experiments, we employed the abnormal brain structures such as the Hippocampus as the PI, trained the model with the data from 1.5T scanners and tested from 3T scanners. The F1-score showed that PINet was more robust in transferring to a new dataset, with approximatedly 2% drop (from 0.9471 to 0.9231), while the baseline CNN methods had a 29% drop (from 0.8679 to 0.6154). The performance of PINet was relied on the selection of the domain knowledge as the PI. Our best model was trained under the guidance of 12 selected ROIs, major in the structures of Temporal Lobe and Occipital Lobe. In summary, PINet considered the domain knowledge as the PI to train the CNN model, and the selected PI introduced both interpretability and generalization ability to the black box CNN classifiers.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Tang Z, Zhang T, Song Q, Su J, Yang B. PINet: Privileged Information Improve the Interpretablity and generalization of structural MRI in Alzheimer's Disease. ACM BCB. 2023;2023:47. doi:10.1145/3584371.3613000
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BCB '23: Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}