Integrals of motion from quantum toroidal algebras

dc.contributor.authorFeigin, B.
dc.contributor.authorJimbo, M.
dc.contributor.authorMukhin, Eugene
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2018-05-17T17:26:59Z
dc.date.available2018-05-17T17:26:59Z
dc.date.issued2017
dc.description.abstractWe identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the $({\mathfrak {gl}}_m, {\mathfrak {gl}}_n)$ duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine ${\mathfrak{sl}}_2$ .en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationFeigin, B., Jimbo, M., & Mukhin, E. (2017). Integrals of motion from quantum toroidal algebras. Journal of Physics A: Mathematical and Theoretical, 50(46), 464001. https://doi.org/10.1088/1751-8121/aa8e92en_US
dc.identifier.urihttps://hdl.handle.net/1805/16213
dc.language.isoenen_US
dc.publisherIOPen_US
dc.relation.isversionof10.1088/1751-8121/aa8e92en_US
dc.relation.journalJournal of Physics A: Mathematical and Theoreticalen_US
dc.rightsPublisher Policyen_US
dc.sourceArXiven_US
dc.subjecttransfer matricesen_US
dc.subjectquantum toroidal algebrasen_US
dc.subjectBethe ansatzen_US
dc.titleIntegrals of motion from quantum toroidal algebrasen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Feigin_2017_integrals.pdf
Size:
332.26 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: