Global divergent trends of algal blooms detected by satellite during 1982–2018

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-04
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2) around the globe over a 37-year time span (1982–2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Fang, C., Song, K., Paerl, H. W., Jacinthe, P.-A., Wen, Z., Liu, G., Tao, H., Xu, X., Kutser, T., Wang, Z., Duan, H., Shi, K., Shang, Y., Lyu, L., Li, S., Yang, Q., Lyu, D., Mao, D., Zhang, B., … Lyu, Y. (2022). Global divergent trends of algal blooms detected by satellite during 1982–2018. Global Change Biology, 28(7), 2327–2340. https://doi.org/10.1111/gcb.16077
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Global Change Biology
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}