Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies

dc.contributor.authorLi, Xihao
dc.contributor.authorQuick, Corbin
dc.contributor.authorZhou, Hufeng
dc.contributor.authorGaynor, Sheila M.
dc.contributor.authorLiu, Yaowu
dc.contributor.authorChen, Han
dc.contributor.authorSelvaraj, Margaret Sunitha
dc.contributor.authorSun, Ryan
dc.contributor.authorDey, Rounak
dc.contributor.authorArnett, Donna K.
dc.contributor.authorBielak, Lawrence F.
dc.contributor.authorBis, Joshua C.
dc.contributor.authorBlangero, John
dc.contributor.authorBoerwinkle, Eric
dc.contributor.authorBowden, Donald W.
dc.contributor.authorBrody, Jennifer A.
dc.contributor.authorCade, Brian E.
dc.contributor.authorCorrea, Adolfo
dc.contributor.authorCupples, L. Adrienne
dc.contributor.authorCurran, Joanne E.
dc.contributor.authorde Vries, Paul S.
dc.contributor.authorDuggirala, Ravindranath
dc.contributor.authorFreedman, Barry I.
dc.contributor.authorGöring, Harald H. H.
dc.contributor.authorGuo, Xiuqing
dc.contributor.authorHaessler, Jeffrey
dc.contributor.authorKalyani, Rita R.
dc.contributor.authorKooperberg, Charles
dc.contributor.authorKral, Brian G.
dc.contributor.authorLange, Leslie A.
dc.contributor.authorManichaikul, Ani
dc.contributor.authorMartin, Lisa W.
dc.contributor.authorMcGarvey, Stephen T.
dc.contributor.authorMitchell, Braxton D.
dc.contributor.authorMontasser, May E.
dc.contributor.authorMorrison, Alanna C.
dc.contributor.authorNaseri, Take
dc.contributor.authorO'Connell, Jeffrey R.
dc.contributor.authorPalmer, Nicholette D.
dc.contributor.authorPeyser, Patricia A.
dc.contributor.authorPsaty, Bruce M.
dc.contributor.authorRaffield, Laura M.
dc.contributor.authorRedline, Susan
dc.contributor.authorReiner, Alexander P.
dc.contributor.authorReupena, Muagututi'a Sefuiva
dc.contributor.authorRice, Kenneth M.
dc.contributor.authorRich, Stephen S.
dc.contributor.authorSitlani, Colleen M.
dc.contributor.authorSmith, Jennifer A.
dc.contributor.authorTaylor, Kent D.
dc.contributor.authorVasan, Ramachandran S.
dc.contributor.authorWiller, Cristen J.
dc.contributor.authorWilson, James G.
dc.contributor.authorYanek, Lisa R.
dc.contributor.authorZhao, Wei
dc.contributor.authorNHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
dc.contributor.authorTOPMed Lipids Working Group
dc.contributor.authorRotter, Jerome I.
dc.contributor.authorNatarajan, Pradeep
dc.contributor.authorPeloso, Gina M.
dc.contributor.authorLi, Zilin
dc.contributor.authorLin, Xihong
dc.contributor.departmentBiostatistics and Health Data Science, School of Medicine
dc.date.accessioned2023-12-19T16:42:26Z
dc.date.available2023-12-19T16:42:26Z
dc.date.issued2023
dc.description.abstractMeta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationLi X, Quick C, Zhou H, et al. Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies. Nat Genet. 2023;55(1):154-164. doi:10.1038/s41588-022-01225-6
dc.identifier.urihttps://hdl.handle.net/1805/37424
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41588-022-01225-6
dc.relation.journalNature Genetics
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectExome sequencing
dc.subjectGenome-wide association study
dc.subjectLipids
dc.subjectPhenotype
dc.subjectWhole genome sequencing
dc.titlePowerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1889710.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: