Fluorescence quenching by metal centered porphyrins and poryphyrin enzymes

Date
2017-10-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Physiological Society
Abstract

Fluorescence spectroscopy and microscopy have been used extensively to monitor biomolecules, especially reactive oxygen species (ROS) and, more recently, reactive sulfide (RSS) species. Nearly all fluorophores are either excited by or emit light between 450 and 550 nm, which is similar to the absorbance of heme proteins and metal-centered porphyrins. Here we examined the effects of catalase (Cat), reduced and oxidized hemoglobin (Hb and metHb), albumin (alb), manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), iron protoporphyrin IX (hemin), and copper protoporphyrin IX (CuPPIX) on the fluorescence properties of fluorescein. We also examined the effects of catalase and MnTBAP on fluorophores for ROS (dichlorofluorescein, DCF), polysulfides (3',6'-di(O-thiosalicyl)fluorescein, SSP4), and H2S (7-azido-4-methylcoumarin, AzMC) previously activated by H2O2, a mixed polysulfide (H2Sn, n = 1-7) and H2S, respectively. All except albumin concentration dependently inhibited fluorophore fluorescence and absorbed light between 450 and 550 nm, suggesting that the inhibitory effect was physical not catalytic. Catalase inhibition of fluorescein fluorescence was unaffected by sodium azide, dithiothreitol, diamide, tris(2-carboxyethyl)phosphine (TCEP), or iodoacetate, supporting a physical inhibitory mechanism. Catalase and TBAP augmented, then inhibited DCF fluorescence, but only inhibited SSP4 and AzMC fluorescence indicative of a substrate-specific catalytic oxidation of DCF and nonspecific fluorescence inhibition of all three fluorophores. These results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Olson, K. R., Gao, Y., Arif, F., Arora, K., Patel, S., DeLeon, E., & Straub, K. D. (2017). Fluorescence quenching by metal centered porphyrins and poryphyrin enzymes. American journal of physiology. Regulatory, integrative and comparative physiology, 313(4), R340–R346. doi:10.1152/ajpregu.00202.2017
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Journal of Physiology : Regulatory, Integrative and Comparative Physiology
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}