Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies

Date
2020-08
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Alzheimer's disease (AD) is a prominent neurodegenerative disorder characterized by deposition of β-amyloid (Aβ)-containing extracellular plaques, accompanied by a microglial-mediated inflammatory response, that leads to cognitive decline. Microglia perform many disease-modifying functions such as phagocytosis of plaques, plaque compaction, and modulation of inflammation through the secretion of cytokines. Microglia are reliant upon colony-stimulating factor receptor-1 (CSF1R) activation for survival. In AD mouse models, chronic targeted depletion of microglia via CSF1R antagonism attenuates plaque formation in early disease but fails to alter plaque burden in late disease. It is unclear if acute depletion of microglia during the peak period of plaque deposition will alter disease pathogenesis, and if so, whether these effects are reversible upon microglial repopulation. To test this, we administered the CSF1R antagonist PLX5622 to the 5XFAD mouse model of AD at four months of age for approximately one month. In a subset of mice, the drug treatment was discontinued, and the mice were fed a control diet for an additional month. We evaluated plaque burden and composition, microgliosis, inflammatory marker expression, and neuritic dystrophy. In 5XFAD animals, CSF1R blockade for 28 days depleted microglia across brain regions by over 50%, suppressed microgliosis, and reduced plaque burden. In microglial-depleted AD animals, neuritic dystrophy was enhanced, and increased diffuse-like plaques and fewer compact-like plaques were observed. Removal of PLX5622 elicited microglial repopulation and subsequent plaque remodeling, resulting in more compact plaques predominating microglia-repopulated regions. We found that microglia limit diffuse plaques by maintaining compact-like plaque properties, thereby blocking the progression of neuritic dystrophy. Microglial repopulation reverses these effects. Collectively, we show that microglia are neuroprotective through maintenance of plaque compaction and morphologies during peak disease progression.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis. 2020;142:104956. doi:10.1016/j.nbd.2020.104956
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Neurobiology of Disease
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}