Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-Ray Tomography Reconstructed Nickel-Manganese-Cobalt Based Half Cell

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016-12
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

In this study, the stress generation caused by phase transitions and lithium intercalation of nickel-manganese-cobalt (NMC) based half cell with realistic 3D microstructures has been studied using finite element method. The electrochemical properties and discharged curves under various C rates are studied. The potential drops significantly with the increase of C rates. During the discharge process, for particles isolated from the conductive channels, several particles with no lithium ion intercalation are observed. For particles in the electrochemical network, the lithium ion concentration increases during the discharge process. The stress generation inside NMC particles is calculated coupled with lithium diffusion and phase transitions. The results show the stresses near the concave and convex regions are the highest. The neck regions of the connected particles can break and form several isolated particles. If the isolated particles are not connected with the electrically conductive materials such as carbon and binder, the capacity loses in battery. For isolated particles in the conductive channel, cracks are more likely to form on the surface. Moreover, stresses inside the particles increase dramatically when considering phase transitions. The phase transitions introduce an abrupt volume change and generate the strain mismatch, causing the stresses increase.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wu, L., Xiao, X., Wen, Y., & Zhang, J. (2016). Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell. Journal of Power Sources, 336, 8–18. https://doi.org/10.1016/j.jpowsour.2016.10.052
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Power Sources
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}