Gabapentin Disrupts Binding of Perlecan to the α2δ1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation

dc.contributor.authorReyes Fernandez, Perla C.
dc.contributor.authorWright, Christian S.
dc.contributor.authorMasterson, Adrianna N.
dc.contributor.authorYi, Xin
dc.contributor.authorTellman, Tristen V.
dc.contributor.authorBonteanu, Andrei
dc.contributor.authorRust, Katie
dc.contributor.authorNoonan, Megan L.
dc.contributor.authorWhite, Kenneth E.
dc.contributor.authorLewis, Karl J.
dc.contributor.authorSankar, Uma
dc.contributor.authorHum, Julia M.
dc.contributor.authorBix, Gregory
dc.contributor.authorWu, Danielle
dc.contributor.authorRobling, Alexander G.
dc.contributor.authorSardar, Rajesh
dc.contributor.authorFarach-Carson, Mary C.
dc.contributor.authorThompson, William R.
dc.contributor.departmentPhysical Therapy, School of Health and Human Sciences
dc.date.accessioned2023-10-06T10:35:15Z
dc.date.available2023-10-06T10:35:15Z
dc.date.issued2022-12-12
dc.description.abstractOur understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.
dc.eprint.versionFinal published version
dc.identifier.citationReyes Fernandez PC, Wright CS, Masterson AN, et al. Gabapentin Disrupts Binding of Perlecan to the α2δ1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules. 2022;12(12):1857. Published 2022 Dec 12. doi:10.3390/biom12121857
dc.identifier.urihttps://hdl.handle.net/1805/36173
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isversionof10.3390/biom12121857
dc.relation.journalBiomolecules
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectBone
dc.subjectGabapentin
dc.subjectMechanosensation
dc.subjectOsteocytes
dc.subjectPerlecan
dc.subjectVoltage-sensitive calcium channels
dc.subjectα2δ1
dc.titleGabapentin Disrupts Binding of Perlecan to the α2δ1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
biomolecules-12-01857.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: