Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery

If you need an accessible version of this item, please submit a remediation request.
Date
2015-04-15
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Physiological Society
Abstract

Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Prisby, R. D., Behnke, B. J., Allen, M. R., & Delp, M. D. (2015). Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery. Journal of Applied Physiology, 118(8), 980–988. http://doi.org/10.1152/japplphysiol.00576.2014
ISSN
1522-1601
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Applied Physiology (Bethesda, Md.: 1985)
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
This item is under embargo {{howLong}}