Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy

dc.contributor.authorGao, Ying
dc.contributor.authorLiu, Yajun
dc.contributor.authorHong, Liang
dc.contributor.authorYang, Zuolong
dc.contributor.authorCai, Xinran
dc.contributor.authorChen, Xiaoyun
dc.contributor.authorFu, Yuanyuan
dc.contributor.authorLin, Yujie
dc.contributor.authorWen, Weijie
dc.contributor.authorLi, Sitong
dc.contributor.authorLiu, Xingguo
dc.contributor.authorHuang, Heqing
dc.contributor.authorVogt, Andreas
dc.contributor.authorLiu, Peiqing
dc.contributor.authorYin, Xiao-Ming
dc.contributor.authorLi, Min
dc.contributor.departmentDepartment of Pathology and Laboratory Medicine, School of Medicineen_US
dc.date.accessioned2017-09-22T20:24:45Z
dc.date.available2017-09-22T20:24:45Z
dc.date.issued2016-08-11
dc.description.abstractAutophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes. Canonical autophagy requires all autophagy proteins (ATGs), whereas noncanonical autophagy is activated by diverse agents in which some of the essential autophagy proteins are dispensable. How noncanonical autophagy is induced and/or inhibited is still largely unclear. In this study, we demonstrated that AMDE-1, a recently identified chemical that can induce canonical autophagy, was able to elicit noncanonical autophagy that is independent of the ULK1 (unc-51-like kinase 1) complex and the Beclin1 complex. AMDE-1-induced noncanonical autophagy could be specifically suppressed by various V-ATPase (vacuolar-type H(+)-ATPase) inhibitors, but not by disturbance of the lysosome function or the intracellular ion redistribution. Similar findings were applicable to a diverse group of stimuli that can induce noncanonical autophagy in a FIP200-independent manner. AMDE-1-induced LC3 lipidation was colocalized with the Golgi complex, and was inhibited by the disturbance of Golgi complex. The integrity of the Golgi complex was also required for multiple other agents to stimulate noncanonical LC3 lipidation. These results suggest that the Golgi complex may serve as a membrane platform for noncanonical autophagy where V-ATPase is a key player. V-ATPase inhibitors could be useful tools for studying noncanonical autophagy.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationGao, Y., Liu, Y., Hong, L., Yang, Z., Cai, X., Chen, X., … Li, M. (2016). Golgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagy. Cell Death & Disease, 7(8), e2330–. http://doi.org/10.1038/cddis.2016.236en_US
dc.identifier.issn2041-4889en_US
dc.identifier.urihttps://hdl.handle.net/1805/14172
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionof10.1038/cddis.2016.236en_US
dc.relation.journalCell Death & Diseaseen_US
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourcePMCen_US
dc.subjectAutophagyen_US
dc.subjectProteinsen_US
dc.subjectLipidsen_US
dc.titleGolgi-associated LC3 lipidation requires V-ATPase in noncanonical autophagyen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cddis2016236a.pdf
Size:
4.56 MB
Format:
Adobe Portable Document Format