Temporary Traffic Control Device Detection for Road Construction Projects Using Deep Learning Application

dc.contributor.authorSeo, Sungchul
dc.contributor.authorChen, Donghui
dc.contributor.authorKim, Kwangcheol
dc.contributor.authorKang, Kyubyung
dc.contributor.authorKoo, Dan
dc.contributor.authorChae, Myungjin
dc.contributor.authorPark, Hyung Keun
dc.contributor.departmentMechanical and Energy Engineering, School of Engineering and Technology
dc.date.accessioned2024-01-10T18:08:29Z
dc.date.available2024-01-10T18:08:29Z
dc.date.issued2022-03-07
dc.description.abstractTraffic control devices in road construction zones play important roles, which (1) provide critical traffic-related information for the drivers, (2) prevent potential crashes near work zones, and (3) protect work crews’ safety. Due to the number of devices in each site, transportation agencies have faced challenges in timely and frequently inspecting traffic control devices, including temporary devices. Deep learning applications can support these inspection processes. The first step of the inspection using deep learning is recognizing traffic control devices in the work zone. This study collected road images using vehicle-mounted cameras from various illuminance and weather conditions. Then, the study (1) labeled eight classes of temporary traffic control devices (TTCDs), (2) modified and trained a machine-learning model using the YOLOv3 algorithm, and (3) tested the detection outcomes of various TTCDs. The key finding shows that the proposed model recognized more than 98% of the temporary traffic signs correctly and approximately 81% of temporary traffic control devices correctly. The construction barricade had the lowest mean Average Precision (50%) out of eight classes. The outcomes can be used as the first step of autonomous safety inspections for road construction projects.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationSeo, S., Chen, D., Kim, K., Kang, K., Koo, D., Chae, M., & Park, H. K. (2022). Temporary Traffic Control Device Detection for Road Construction Projects Using Deep Learning Application. Construction Research Congress 2022, 392–401. https://doi.org/10.1061/9780784483961.042
dc.identifier.urihttps://hdl.handle.net/1805/37953
dc.language.isoen_US
dc.publisherASCE
dc.relation.isversionof10.1061/9780784483961.042
dc.relation.journalConstruction Research Congress 2022
dc.rightsPublisher Policy
dc.sourceAuthor
dc.subjectTraffic Control Device
dc.subjectObject Detection
dc.subjectYOLO
dc.subjectDeep Learning
dc.titleTemporary Traffic Control Device Detection for Road Construction Projects Using Deep Learning Application
dc.typeConference proceedings
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seo2022Temporary-AAM.pdf
Size:
815.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: