Yeast apurinic/apyrimidinic endonuclease Apn1 protects mammalian neuronal cell line from oxidative stress

If you need an accessible version of this item, please submit a remediation request.
Date
2007-07
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Reactive oxygen species (ROS) have been implicated as one of the agents responsible for many neurodegenerative diseases. A critical target for ROS is DNA. Most oxidative stress-induced DNA damage in the nucleus and mitochondria is removed by the base excision repair pathway. Apn1 is a yeast enzyme in this pathway which possesses a wider substrate specificity and greater enzyme activity than its mammalian counterpart for removing DNA damage, making it a good therapeutic candidate. For this study we targeted Apn1 to mitochondria in a neuronal cell line derived from the substantia nigra by using a mitochondrial targeting signal (MTS) in an effort to hasten the removal of DNA damage and thereby protect these cells. We found that following oxidative stress, mitochondrial DNA (mtDNA) was repaired more efficiently in cells containing Apn1 with the MTS than controls. There was no difference in nuclear repair. However, cells that expressed Apn1 without the MTS showed enhanced repair of both nuclear and mtDNA. Both Apn1-expressing cells were more resistant to cell death following oxidative stress compared with controls. Therefore, these results reveal that the expression of Apn1 in neurons may be of potential therapeutic benefit for treating patients with specific neurodegenerative diseases.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ho, R., Rachek, L. I., Xu, Y., Kelley, M. R., LeDoux, S. P., & Wilson, G. L. (2007). Yeast apurinic/apyrimidinic endonuclease Apn1 protects mammalian neuronal cell line from oxidative stress. Journal of neurochemistry, 102(1), 13-24.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}