- Mark R. Kelley
Mark R. Kelley
Permanent URI for this collection
Dr. Kelley is the 2017 recipient of the Bantz Petronio Translating Research Into Practice Award
Since joining the Department of Pediatrics at the IU School of Medicine in 1993, Dr, Kelley’s work has focused on translational research in DNA damage and repair, specifically, to determine how those activities can be exploited therapeutically to treat cancers and protect normal cells from DNA damage.
He has focused specifically on the enzyme called APE1 as a therapeutic target in cancers and other diseases. Dr. Kelley discovered and has been developing a specific inhibitor of APE1 which he is now translating to clinical trials. This work has also led to the creation of a biotechnology company called Apexian Pharmaceuticals, of which Dr. Kelley is the Chief Scientific Founder and Officer.
The first drug developed has recently been approved by the FDA for Phase 1 clinical trials in cancer patients scheduled to begin in 2017. The drug has potential uses in a number of cancers including ovarian, colon, bladder, pancreatic, leukemia, and other adult and pediatric cancers.
He is also exploring the use of the target APE1 and the drug to prevent a major side-effect of cancer treatments called chemotherapy-induced peripheral neuropathy (CIPN).
Dr. Kelley is committed to fast-tracking collaboration and translational research efforts in order to find more effective cancer treatments. He also mentors and encourages students, post-doctorates, fellows and junior faculty in translating their research into practice to expand the number of discoveries that help solve problems and make life better.
Professor Kelley's application of a business model to support research planning and implementation is another example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Recent Submissions
Item APE1/Ref-1 – One Target with Multiple Indications: Emerging Aspects and New Directions(Scientific Archives, 2021) Mijit, Mahmut; Caston, Rachel; Gampala, Silpa; Fishel, Melissa L.; Fehrenbacher, Jill; Kelley, Mark R.; Pediatrics, School of MedicineIn the realm of DNA repair, base excision repair (BER) protein, APE1/Ref-1 (Apurinic/Apyrimidinic Endonuclease 1/Redox Effector - 1, also called APE1) has been studied for decades. However, over the past decade, APE1 has been established as a key player in reduction-oxidation (redox) signaling. In the review by Caston et al. (The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease), multiple roles of APE1 in cancer and other diseases are summarized. In this Review, we aim to expand on the contributions of APE1 to various diseases and its effect on disease progression. In the scope of cancer, more recent roles for APE1 have been identified in cancer cell metabolism, as well as chemotherapy-induced peripheral neuropathy (CIPN) and inflammation. Outside of cancer, APE1 signaling may be a critical factor in inflammatory bowel disease (IBD) and is also an emergent area of investigation in retinal ocular diseases. The ability of APE1 to regulate multiple transcription factors (TFs) and therefore multiple pathways that have implications outside of cancer, makes it a particularly unique and enticing target. We discuss APE1 redox inhibitors as a means of studying and potentially combating these diseases. Lastly, we examine the role of APE1 in RNA metabolism. Overall, this article builds on our previous review to elaborate on the roles and conceivable regulation of important pathways by APE1 in multiple diseases.Item Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target(BMC, 2021-08-10) Gampala, Silpa; Shah, Fenil; Lu, Xiaoyu; Moon, Hye-ran; Babb, Olivia; Umesh Ganesh, Nikkitha; Sandusky, George; Hulsey, Emily; Armstrong, Lee; Mosely, Amber L.; Han, Bumsoo; Ivan, Mircea; Yeh, Jing-Ruey Joanna; Kelley, Mark R.; Zhang, Chi; Fishel, Melissa L.; Pediatrics, School of MedicineBackground: Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. Methods: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. Results: Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. Conclusion: Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.Item Inhibition of APE1/Ref-1 Redox Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis(Oxford University Press, 2021-02-16) Sahakian, Lauren; Filippone, Rhiannon T.; Stavely, Rhian; Robinson, Ainsley M.; Yan, Xu Sean; Abalo, Raquel; Eri, Rajaraman; Bornstein, Joel C.; Kelley, Mark R.; Nurgali, Kulmira; Pediatrics, School of MedicineBackground: Inflammatory bowel disease (IBD) associates with damage to the enteric nervous system (ENS), leading to gastrointestinal (GI) dysfunction. Oxidative stress is important for the pathophysiology of inflammation-induced enteric neuropathy and GI dysfunction. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual functioning protein that is an essential regulator of the cellular response to oxidative stress. In this study, we aimed to determine whether an APE1/Ref-1 redox domain inhibitor, APX3330, alleviates inflammation-induced oxidative stress that leads to enteric neuropathy in the Winnie murine model of spontaneous chronic colitis. Methods: Winnie mice received APX3330 or vehicle via intraperitoneal injections over 2 weeks and were compared with C57BL/6 controls. In vivo disease activity and GI transit were evaluated. Ex vivo experiments were performed to assess functional parameters of colonic motility, immune cell infiltration, and changes to the ENS. Results: Targeting APE1/Ref-1 redox activity with APX3330 improved disease severity, reduced immune cell infiltration, restored GI function ,and provided neuroprotective effects to the enteric nervous system. Inhibition of APE1/Ref-1 redox signaling leading to reduced mitochondrial superoxide production, oxidative DNA damage, and translocation of high mobility group box 1 protein (HMGB1) was involved in neuroprotective effects of APX3330 in enteric neurons. Conclusions: This study is the first to investigate inhibition of APE1/Ref-1's redox activity via APX3330 in an animal model of chronic intestinal inflammation. Inhibition of the redox function of APE1/Ref-1 is a novel strategy that might lead to a possible application of APX3330 for the treatment of IBD.Item Lack of EGF receptor contributes to drug sensitivity of human germline cells(Springer, 2005-01) Park, S.J.; Armstrong, S.; Kim, C.H.; Yu, M.; Robertson, K.; Kelley, Mark R.; Lee, S.H.; Biochemistry and Molecular Biology, School of MedicineGermline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance, suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours.Item Combined inhibition of Ref‐1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co‐culture models(Wiley, 2021-01) Caston, Rachel A.; Shah, Fenil; Starcher, Colton L.; Wireman, Randall; Babb, Olivia; Grimard, Michelle; McGeown, Jack; Armstrong, Lee; Tong, Yan; Pili, Roberto; Rupert, Joseph; Zimmers, Teresa A.; Elmi, Adily N.; Pollok, Karen E.; Motea, Edward A.; Kelley, Mark R.; Fishel, Melissa L.; Pediatrics, School of MedicineWith a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref‐1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF‐κB, AP‐1, HIF‐1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref‐1 (redox factor‐1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref‐1 in multiple cancer types. Using targeted small molecule inhibitors, Ref‐1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer‐associated fibroblasts (CAF) response to determine the synergy of Ref‐1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref‐1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.Item Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination(Elsevier, 2019-03-29) Frossi, Barbara; Antoniali, Giulia; Yu, Kefei; Akhtar, Nahid; Kaplan, Mark H.; Kelley, Mark R.; Tell, Gianluca; Pucillo, Carlo E.; Pediatrics, School of MedicineThe base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.Item Inhibition of APE1/Ref-1 for Neovascular Eye Diseases: From Biology to Therapy(MDPI, 2021-09) Hartman, Gabriella D.; Lambert-Cheatham, Nathan A.; Kelley, Mark R.; Corson, Timothy W.; Ophthalmology, School of MedicineProliferative diabetic retinopathy (PDR), neovascular age-related macular degeneration (nvAMD), retinopathy of prematurity (ROP) and other eye diseases are characterized by retinal and/or choroidal neovascularization, ultimately causing vision loss in millions of people worldwide. nvAMD and PDR are associated with aging and the number of those affected is expected to increase as the global median age and life expectancy continue to rise. With this increase in prevalence, the development of novel, orally bioavailable therapies for neovascular eye diseases that target multiple pathways is critical, since current anti-vascular endothelial growth factor (VEGF) treatments, delivered by intravitreal injection, are accompanied with tachyphylaxis, a high treatment burden and risk of complications. One potential target is apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1). The multifunctional protein APE1/Ref-1 may be targeted via inhibitors of its redox-regulating transcription factor activation activity to modulate angiogenesis, inflammation, oxidative stress response and cell cycle in neovascular eye disease; these inhibitors also have neuroprotective effects in other tissues. An APE1/Ref-1 small molecule inhibitor is already in clinical trials for cancer, PDR and diabetic macular edema. Efforts to develop further inhibitors are underway. APE1/Ref-1 is a novel candidate for therapeutically targeting neovascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal injections.Item APE1/Ref-1 as a Novel Target for Retinal Diseases(Scientific Archives, 2021) Heisel, Curtis; Yousif, Jonah; Mijiti, Mahmut; Charizanis, Kostas; Brigell, Mitchel; Corson, Timothy W.; Kelley, Mark R.; Ophthalmology, School of MedicineAPE1/Ref-1 (also called Ref-1) has been extensively studied for its role in DNA repair and reduction-oxidation (redox) signaling. The review titled: “The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease” by Caston et. al. summarizes the molecular functions of Ref-1 and the role it plays in a number of diseases, with a specific focus on various types of cancer [1]. Previous studies have demonstrated that Ref-1 plays a critical role in regulating specific transcription factors (TFs) involved in a number of pathways, not only in cancer, but other disease indications as well. Disease indications of particular therapeutic interest include retinal vascular diseases such as diabetic retinopathy (DR), diabetic macular edema (DME), and neovascular agerelated macular degeneration (nvAMD). While Ref-1 controls a number of TFs that are under redox regulation, three have been found to directly link cancer studies to retinal diseases; HIF-1α, NF-κB and STAT3. HIF-1α controls the expression of VEGF for angiogenesis while NF-κB and STAT3 regulate a number of known cytokines and factors involved in inflammation. These pathways are highly implicated and validated as major players in DR, DME and AMD. Therefore, findings in cancer studies for Ref-1 and its inhibition may be translated to these ocular diseases. This report discusses the path from cancer to the potential treatment of retinal disease, the Ref-1 redox signaling function as a possible target, and the current small molecules which have been identified to block this activity. One molecule, APX3330, is in clinical trials, while the others are in preclinical development. Inhibition of Ref-1 and its effects on inflammation and angiogenesis makes it a potential new therapeutic target for the treatment of retinal vascular diseases. This commentary summarizes the retinal-relevant research that built on the results summarized in the review by Caston et. al. [1].Item Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update(ASCO, 2020-10) Loprinzi, Charles L.; Lacchetti, Christina; Bleeker, Jonathan; Cavaletti, Guido; Chauhan, Cynthia; Hertz, Daniel L.; Kelley, Mark R.; Lavino, Antoinette; Lustberg, Maryam B.; Paice, Judith A.; Schneider, Bryan P.; Lavoie Smith, Ellen M.; Smith, Mary Lou; Smith, Thomas J.; Wagner Johnston, Nina; Hershman, Dawn L.; Pediatrics, School of MedicinePURPOSE To update the ASCO guideline on the recommended prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathy (CIPN) in adult cancer survivors. METHODS An Expert Panel conducted targeted systematic literature reviews to identify new studies. RESULTS The search strategy identified 257 new references, which led to a full-text review of 87 manuscripts. A total of 3 systematic reviews, 2 with meta-analyses, and 28 primary trials for prevention of CIPN in addition to 14 primary trials related to treatment of established CIPN, are included in this update. RECOMMENDATIONS The identified data reconfirmed that no agents are recommended for the prevention of CIPN. The use of acetyl-l-carnitine for the prevention of CIPN in patients with cancer should be discouraged. Furthermore, clinicians should assess the appropriateness of dose delaying, dose reduction, substitutions, or stopping chemotherapy in patients who develop intolerable neuropathy and/or functional impairment. Duloxetine is the only agent that has appropriate evidence to support its use for patients with established painful CIPN. Nonetheless, the amount of benefit from duloxetine is limited.Item Anti-tumor activity and mechanistic characterization of APE1/Ref-1 inhibitors in bladder cancer(American Association for Cancer Research, 2019-08-14) Fishel, Melissa L.; Xia, Hanyu; McGeown, Jack; McIlwain, David W.; Elbanna, May; Craft, Ariel A.; Kaimakliotis, Hristos Z.; Sandusky, George E.; Zhang, Chi; Pili, Roberto; Kelley, Mark R.; Jerde, Travis J.; Pharmacology and Toxicology, School of MedicineBladder cancer is the ninth most common cause of cancer-related deaths worldwide. Although cisplatin is used routinely in treating bladder cancer, refractory disease remains lethal for many patients. The recent addition of immunotherapy has improved patient outcomes; however, a large cohort of patients does not respond to these treatments. Therefore, identification of innovative molecular targets for bladder cancer is crucial. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in both DNA repair and activation of transcription factors through reduction-oxidation (redox) regulation. High APE1/Ref-1 expression is associated with shorter patient survival time in many cancer types. In this study, we found high APE1/Ref-1 expression in human bladder cancer tissue relative to benign urothelium. Inhibition of APE1/Ref-1 redox signaling using APE1/Ref-1-specific inhibitors attenuates bladder cancer cell proliferation in monolayer, in three-dimensional cultures, and in vivo. This inhibition corresponds with an increase in apoptosis and decreased transcriptional activity of NF-κB and STAT3, transcription factors known to be regulated by APE1/Ref-1, resulting in decreased expression of downstream effectors survivin and Cyclin D1 in vitro and in vivo. We also demonstrate that in vitro treatment of bladder cancer cells with APE1/Ref-1 redox inhibitors in combination with standard-of-care chemotherapy cisplatin is more effective than cisplatin alone at inhibiting cell proliferation. Collectively, our data demonstrate that APE1/Ref-1 is a viable drug target for the treatment of bladder cancer, provide a mechanism of APE1/Ref-1 action in bladder cancer cells, and support the use of novel redox-selective APE1/Ref-1 inhibitors in clinical studies. SIGNIFICANCE: This work identifies a critical mechanism for APE1/Ref-1 in bladder cancer growth and provides compelling preclinical data using selective redox activity inhibitors of APE1/Ref-1 in vitro and in vivo.