Tracking motion kinematics and tremor with intrinsic oscillatory property of instrumental mechanics

Date
2022-10-22
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Tracking kinematic details of motor behaviors is a foundation to study the neuronal mechanism and biology of motor control. However, most of the physiological motor behaviors and movement disorders, such as gait, balance, tremor, dystonia, and myoclonus, are highly dependent on the overall momentum of the whole-body movements. Therefore, tracking the targeted movement and overall momentum simultaneously is critical for motor control research, but it remains an unmet need. Here, we introduce the intrinsic oscillatory property (IOP), a fundamental mechanical principle of physics, as a method for motion tracking in a force plate. The overall kinetic energy of animal motions can be transformed into the oscillatory amplitudes at the designed IOP frequency of the force plate, while the target movement has its own frequency features and can be tracked simultaneously. Using action tremor as an example, we reported that force plate-based IOP approach has superior performance and reliability in detecting both tremor severity and tremor frequency, showing a lower level of coefficient of variation (CV) compared with video- and accelerometer-based motion tracking methods and their combination. Under the locomotor suppression effect of medications, therapeutic effects on tremor severity can still be quantified by dynamically adjusting the overall locomotor activity detected by IOP. We further validated IOP method in optogenetic-induced movements and natural movements, confirming that IOP can represent the intensity of general rhythmic and nonrhythmic movements, thus it can be generalized as a common approach to study kinematics.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ni CL, Lin YT, Lu LY, et al. Tracking motion kinematics and tremor with intrinsic oscillatory property of instrumental mechanics. Bioeng Transl Med. 2022;8(2):e10432. Published 2022 Oct 22. doi:10.1002/btm2.10432
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioengineering & Translational Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}