Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

Date
2014-05-02
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Frampton JP, White JB, Simon AB, Tsuei M, Paczesny S, Takayama S. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA. Sci Rep. 2014;4:4878. Published 2014 May 2. doi:10.1038/srep04878
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Scientific Reports
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}