Coupled IGMM-GANs for improved generative adversarial anomaly detection

dc.contributor.authorGray, Kathryn
dc.contributor.authorSmolyak, Daniel
dc.contributor.authorBadirli, Sarkhan
dc.contributor.authorMohler, George
dc.contributor.departmentComputer and Information Science, School of Scienceen_US
dc.date.accessioned2020-02-11T18:25:15Z
dc.date.available2020-02-11T18:25:15Z
dc.date.issued2018-12
dc.description.abstractDetecting anomalies and outliers in data has a number of applications including hazard sensing, fraud detection, and systems management. While generative adversarial networks seem like a natural fit for addressing these challenges, we find that existing GAN based anomaly detection algorithms perform poorly due to their inability to handle multimodal patterns. For this purpose we introduce an infinite Gaussian mixture model coupled with (bi-directional) generative adversarial networks, IGMM-GAN, that facilitates multimodal anomaly detection. We illustrate our methodology and its improvement over existing GAN anomaly detection on the MNIST dataset.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationGray, K., Smolyak, D., Badirli, S., & Mohler, G. (2018). Coupled IGMM-GANs for improved generative adversarial anomaly detection. 2018 IEEE International Conference on Big Data (Big Data), 2538–2541. https://doi.org/10.1109/BigData.2018.8622424en_US
dc.identifier.urihttps://hdl.handle.net/1805/22062
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/BigData.2018.8622424en_US
dc.relation.journal2018 IEEE International Conference on Big Data (Big Data)en_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectanomaly detectionen_US
dc.subjectgallium nitrideen_US
dc.subjectgeneratorsen_US
dc.titleCoupled IGMM-GANs for improved generative adversarial anomaly detectionen_US
dc.typeConference proceedingsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gray_2019_coupled.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: