4335 Role of PSD95 and nNOS interaction in gene regulation following fear conditioning and implications for molecular mechanisms underlying PTSD

Date
2020-07-29
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Cambridge University Press
Abstract

OBJECTIVES/GOALS: Normal fear learning produces avoidance behavior that promotes survival, but excessive and persistent fear after trauma can lead to development of phobias and post-traumatic stress disorder (PTSD). Our goal is to understand the mechanism and identify novel genetic targets underlying fear responses. METHODS/STUDY POPULATION: Involvement of the amygdala in fear acquisition is well established and requires activation of N-methyl-D-aspartic acid receptors (NMDARs). At a cellular level, NMDAR activation leads to production of nitric oxide (NO) by a process mediated by interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS). To elucidate mechanisms underlying the role of the PSD95-nNOS-NO pathway in conditioned fear, here we use rodent behavioral paradigms, pharmacological treatment with a small molecular PSD95-nNOS inhibitor, co-immunoprecipitation, Western blotting, and RNA-sequencing. RESULTS/ANTICIPATED RESULTS: We show that fear conditioning enhances the PSD95-nNOS interaction and that the small-molecule ZL006 inhibits this interaction. Treatment with ZL006 also attenuates rodent cued-fear consolidation and prevents fear-mediated shifts in glutamatergic receptor and current densities in the basolateral amygdala (BLA). With RNA-sequencing, expression of 516 genes was altered in the BLA following fear expression; of these genes, 83 were restored by systemic ZL006 treatment. Network data and gene ontology enrichment analysis with Ingenuity Pathway Analysis and DAVID software found that cell-cell interaction, cognition-related pathways, and insulin-like growth factor binding were significantly altered. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results reveal novel genetic targets that underlie plasticity of fear-memory circuitry via their contribution of NMDAR-mediated fear consolidation and can inform future strategies for targeting fear related disorders like PTSD. CONFLICT OF INTEREST DESCRIPTION: Anantha Shekhar and Yvonne Lai are co-founders of Anagin, Inc., which is developing some of the related molecules for the treatment of PTSD.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Patel J, Dustrude E, Haulcomb M, et al. 4335 Role of PSD95 and nNOS interaction in gene regulation following fear conditioning and implications for molecular mechanisms underlying PTSD. J Clin Transl Sci. 2020;4(Suppl 1):15-16. Published 2020 Jul 29. doi:10.1017/cts.2020.90
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Clinical and Translational Science
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}