The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice
dc.contributor.author | Bleher, Pavel | |
dc.contributor.author | Elwood, Brad | |
dc.contributor.author | Petrović, Dražen | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2018-10-19T17:50:33Z | |
dc.date.available | 2018-10-19T17:50:33Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We prove the Pfaffian Sign Theorem for the dimer model on a triangular lattice embedded in the torus. More specifically, we prove that the Pfaffian of the Kasteleyn periodic-periodic matrix is negative, while the Pfaffians of the Kasteleyn periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-antiperiodic matrices are all positive. The proof is based on the Kasteleyn identities and on small weight expansions. As an application, we obtain an asymptotic behavior of the dimer model partition function with an exponentially small error term. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Bleher, P., Elwood, B., & Petrović, D. (2018). The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice. Journal of Statistical Physics, 171(3), 400–426. https://doi.org/10.1007/s10955-018-2007-z | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/17610 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s10955-018-2007-z | en_US |
dc.relation.journal | Journal of Statistical Physics | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | ArXiv | en_US |
dc.subject | Dimer model | en_US |
dc.subject | exact solution | en_US |
dc.subject | triangular lattice | en_US |
dc.title | The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice | en_US |
dc.type | Article | en_US |