Assessing uncertainty in dynamic functional connectivity

Date
2017-04-01
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Functional connectivity (FC) - the study of the statistical association between time series from anatomically distinct regions (Friston, 1994, 2011) - has become one of the primary areas of research in the field surrounding resting state functional magnetic resonance imaging (rs-fMRI). Although for many years researchers have implicitly assumed that FC was stationary across time in rs-fMRI, it has recently become increasingly clear that this is not the case and the ability to assess dynamic changes in FC is critical for better understanding of the inner workings of the human brain (Hutchison et al., 2013; Chang and Glover, 2010). Currently, the most common strategy for estimating these dynamic changes is to use the sliding-window technique. However, its greatest shortcoming is the inherent variation present in the estimate, even for null data, which is easily confused with true time-varying changes in connectivity (Lindquist et al., 2014). This can have serious consequences as even spurious fluctuations caused by noise can easily be confused with an important signal. For these reasons, assessment of uncertainty in the sliding-window correlation estimates is of critical importance. Here we propose a new approach that combines the multivariate linear process bootstrap (MLPB) method and a sliding-window technique to assess the uncertainty in a dynamic FC estimate by providing its confidence bands. Both numerical results and an application to rs-fMRI study are presented, showing the efficacy of the proposed method.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kudela, M., Harezlak, J., & Lindquist, M. A. (2017). Assessing uncertainty in dynamic functional connectivity. NeuroImage, 149, 165–177. http://doi.org/10.1016/j.neuroimage.2017.01.056
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
NeuroImage
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}