MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2024-07-19
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Background: The increasing production and usage of copper oxide nanoparticles (Nano-CuO) raise human health concerns. Previous studies have demonstrated that exposure to Nano-CuO could induce lung inflammation, injury, and fibrosis. However, the potential underlying mechanisms are still unclear. Here, we proposed that matrix metalloproteinase-3 (MMP-3) might play an important role in Nano-CuO-induced lung inflammation, injury, and fibrosis.

Results: Exposure of mice to Nano-CuO caused acute lung inflammation and injury in a dose-dependent manner, which was reflected by increased total cell number, neutrophil count, macrophage count, lactate dehydrogenase (LDH) activity, and CXCL1/KC level in bronchoalveolar lavage fluid (BALF) obtained on day 3 post-exposure. The time-response study showed that Nano-CuO-induced acute lung inflammation and injury appeared as early as day 1 after exposure, peaked on day 3, and ameliorated over time. However, even on day 42 post-exposure, the LDH activity and macrophage count were still higher than those in the control group, suggesting that Nano-CuO caused chronic lung inflammation. The Nano-CuO-induced pulmonary inflammation was further confirmed by H&E staining of lung sections. Trichrome staining showed that Nano-CuO exposure caused pulmonary fibrosis from day 14 to day 42 post-exposure with an increasing tendency over time. Increased hydroxyproline content and expression levels of fibrosis-associated proteins in mouse lungs were also observed. In addition, Nano-CuO exposure induced MMP-3 overexpression and increased MMP-3 secretion in mouse lungs. Knocking down MMP-3 in mouse lungs significantly attenuated Nano-CuO-induced acute and chronic lung inflammation and fibrosis. Moreover, Nano-CuO exposure caused sustained production of cleaved osteopontin (OPN) in mouse lungs, which was also significantly decreased by knocking down MMP-3.

Conclusions: Our results demonstrated that short-term Nano-CuO exposure caused acute lung inflammation and injury, while long-term exposure induced chronic pulmonary inflammation and fibrosis. Knocking down MMP-3 significantly ameliorated Nano-CuO-induced pulmonary inflammation, injury, and fibrosis, and also attenuated Nano-CuO-induced cleaved OPN level. Our study suggests that MMP-3 may play important roles in Nano-CuO-induced pulmonary inflammation and fibrosis via cleavage of OPN and may provide a further understanding of the mechanisms underlying Nano-CuO-induced pulmonary toxicity.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhang Y, Zhang Z, Mo Y, Zhang Y, Yuan J, Zhang Q. MMP-3 mediates copper oxide nanoparticle-induced pulmonary inflammation and fibrosis. J Nanobiotechnology. 2024;22(1):428. Published 2024 Jul 19. doi:10.1186/s12951-024-02707-x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Nanobiotechnology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}