Accelerating ab initio QM/MM Molecular Dynamics Simulations with Multiple Time Step Integration and a Recalibrated Semi-empirical QM/MM Hamiltonian

dc.contributor.authorPan, Xiaoliang
dc.contributor.authorVan, Richard
dc.contributor.authorEpifanovsky, Evgeny
dc.contributor.authorLiu, Jian
dc.contributor.authorPu, Jingzhi
dc.contributor.authorNam, Kwangho
dc.contributor.authorShao, Yihan
dc.contributor.departmentChemistry and Chemical Biology, School of Science
dc.date.accessioned2024-05-09T09:20:53Z
dc.date.available2024-05-09T09:20:53Z
dc.date.issued2022-06-02
dc.description.abstractMolecular dynamics (MD) simulations employing ab initio quantum mechanical and molecular mechanical (ai-QM/MM) potentials are considered to be the state of the art, but the high computational cost associated with the ai-QM calculations remains a theoretical challenge for their routine application. Here, we present a modified protocol of the multiple time step (MTS) method for accelerating ai-QM/MM MD simulations of condensed-phase reactions. Within a previous MTS protocol [Nam J. Chem. Theory Comput. 2014, 10, 4175], reference forces are evaluated using a low-level (semiempirical QM/MM) Hamiltonian and employed at inner time steps to propagate the nuclear motions. Correction forces, which arise from the force differences between high-level (ai-QM/MM) and low-level Hamiltonians, are applied at outer time steps, where the MTS algorithm allows the time-reversible integration of the correction forces. To increase the outer step size, which is bound by the highest-frequency component in the correction forces, the semiempirical QM Hamiltonian is recalibrated in this work to minimize the magnitude of the correction forces. The remaining high-frequency modes, which are mainly bond stretches involving hydrogen atoms, are then removed from the correction forces. When combined with a Langevin or SIN(R) thermostat, the modified MTS-QM/MM scheme remains robust with an up to 8 (with Langevin) or 10 fs (with SIN(R)) outer time step (with 1 fs inner time steps) for the chorismate mutase system. This leads to an over 5-fold speedup over standard ai-QM/MM simulations, without sacrificing the accuracy in the predicted free energy profile of the reaction.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationPan X, Van R, Epifanovsky E, et al. Accelerating Ab Initio Quantum Mechanical and Molecular Mechanical (QM/MM) Molecular Dynamics Simulations with Multiple Time Step Integration and a Recalibrated Semiempirical QM/MM Hamiltonian. J Phys Chem B. Published online June 2, 2022. doi:10.1021/acs.jpcb.2c02262
dc.identifier.urihttps://hdl.handle.net/1805/40579
dc.language.isoen_US
dc.publisherAmerican Chemical Society
dc.relation.isversionof10.1021/acs.jpcb.2c02262
dc.relation.journalThe Journal of Physical Chemistry B
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectMolecular dynamics (MD)
dc.subjectAb initio quantum mechanical and molecular mechanical (ai-QM/MM)
dc.subjectFree energy profile
dc.titleAccelerating ab initio QM/MM Molecular Dynamics Simulations with Multiple Time Step Integration and a Recalibrated Semi-empirical QM/MM Hamiltonian
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pan2022Accelerating-AAM.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: