Rho Kinases in Embryonic Development and Stem Cell Research

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz). 2022;70(1):4. Published 2022 Jan 19. doi:10.1007/s00005-022-00642-z
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Archivum Immunologiae et Therapiae Experimentalis
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}