A new halotolerant xylanase from Aspergillus clavatus expressed in Escherichia coli with catalytic efficiency improved by site-directed mutagenesis

Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Daily agro-industrial waste, primarily cellulose, lignin, and hemicellulose, poses a significant environmental challenge. Harnessing lignocellulolytic enzymes, particularly endo-1,4-β-xylanases, for efficient saccharification is a cost-effective strategy, transforming biomass into high-value products. This study focuses on the cloning, expression, site-directed mutagenesis, purification, three-dimensional modeling, and characterization of the recombinant endo-1,4-β-xylanase (XlnA) from Aspergillus clavatus in Escherichia coli. This work includes evaluation of the stability at varied NaCl concentrations, determining kinetic constants, and presenting the heterologous expression of XlnAΔ36 using pET22b(+). The expression led to purified enzymes with robust stability across diverse pH levels, exceptional thermostability at 50 °C, and 96-100% relative stability after 24 h in 3.0 M NaCl. Three-dimensional modeling reveals a GH11 architecture with catalytic residues Glu 132 and 22. XlnAΔ36 demonstrates outstanding kinetic parameters compared to other endo-1,4-β-xylanases, indicating its potential for industrial enzymatic cocktails, enhancing saccharification. Moreover, its ability to yield high-value compounds, such as sugars, suggests a promising and ecologically positive alternative for the food and biotechnology industries.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Pasin TM, Lucas RC, de Oliveira TB, McLeish MJ, Polizeli MLTM. A new halotolerant xylanase from Aspergillus clavatus expressed in Escherichia coli with catalytic efficiency improved by site-directed mutagenesis. 3 Biotech. 2024;14(7):178. doi:10.1007/s13205-024-04021-7
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
3 Biotech
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}