Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance

dc.contributor.authorWang, Hai
dc.contributor.authorGao, Zan
dc.contributor.authorLiu, Xuanyou
dc.contributor.authorAgarwal, Pranay
dc.contributor.authorZhao, Shuting
dc.contributor.authorConroy, Daniel W.
dc.contributor.authorJi, Guang
dc.contributor.authorYu, Jianhua
dc.contributor.authorJaroniec, Christopher P.
dc.contributor.authorLiu, Zhenguo
dc.contributor.authorLu, Xiongbin
dc.contributor.authorLi, Xiaodong
dc.contributor.authorHe, Xiaoming
dc.contributor.departmentMedical and Molecular Genetics, School of Medicineen_US
dc.date.accessioned2018-07-19T17:06:17Z
dc.date.available2018-07-19T17:06:17Z
dc.date.issued2018-02-08
dc.description.abstractMultidrug resistance is a major challenge to cancer chemotherapy. The multidrug resistance phenotype is associated with the overexpression of the adenosine triphosphate (ATP)-driven transmembrane efflux pumps in cancer cells. Here, we report a lipid membrane-coated silica-carbon (LSC) hybrid nanoparticle that targets mitochondria through pyruvate, to specifically produce reactive oxygen species (ROS) in mitochondria under near-infrared (NIR) laser irradiation. The ROS can oxidize the NADH into NAD+ to reduce the amount of ATP available for the efflux pumps. The treatment with LSC nanoparticles and NIR laser irradiation also reduces the expression and increases the intracellular distribution of the efflux pumps. Consequently, multidrug-resistant cancer cells lose their multidrug resistance capability for at least 5 days, creating a therapeutic window for chemotherapy. Our in vivo data show that the drug-laden LSC nanoparticles in combination with NIR laser treatment can effectively inhibit the growth of multidrug-resistant tumors with no evident systemic toxicityen_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationWang, H., Gao, Z., Liu, X., Agarwal, P., Zhao, S., Conroy, D. W., … He, X. (2018). Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nature Communications, 9, 562. http://doi.org/10.1038/s41467-018-02915-8en_US
dc.identifier.urihttps://hdl.handle.net/1805/16715
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionof10.1038/s41467-018-02915-8en_US
dc.relation.journalNature Communicationsen_US
dc.rightsAttribution 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/
dc.sourcePMCen_US
dc.subjectAdenosine triphosphateen_US
dc.subjectAntineoplastic agentsen_US
dc.subjectCell line, Tumoren_US
dc.subjectDoxorubicinen_US
dc.subjectDrug resistance, Multipleen_US
dc.subjectMCF-7 cellsen_US
dc.subjectMitochondriaen_US
dc.subjectNanoparticlesen_US
dc.subjectOxidation-reductionen_US
dc.subjectReactive oxygen speciesen_US
dc.subjectDrug resistance, Neoplasmen_US
dc.titleTargeted production of reactive oxygen species in mitochondria to overcome cancer drug resistanceen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41467_2018_Article_2915.pdf
Size:
10.24 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: