Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deployment

dc.contributor.authorChappa, Ravi Teja N. V. S.
dc.contributor.authorEl-Sharkawy, Mohamed
dc.contributor.departmentElectrical and Computer Engineering, School of Engineering and Technologyen_US
dc.date.accessioned2021-02-05T19:33:29Z
dc.date.available2021-02-05T19:33:29Z
dc.date.issued2020-01
dc.description.abstractConvolution neural network is being used in field of autonomous driving vehicles or driver assistance systems (ADAS), and has achieved great success. Before the convolution neural network, traditional machine learning algorithms helped the driver assistance systems. Currently, there is a great exploration being done in architectures like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. This paper proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this paper is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Having a model size of 0.595MB along with accuracy of 92.60% and with a satisfactory training and validating speed of 9 seconds, this model can be deployed on real-time autonomous system platform such as Bluebox 2.0 by NXP.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationChappa, R. T. N. V. S., & El-Sharkawy, M. (2020). Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deployment. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), 0691–0697. https://doi.org/10.1109/CCWC47524.2020.9031119en_US
dc.identifier.urihttps://hdl.handle.net/1805/25157
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/CCWC47524.2020.9031119en_US
dc.relation.journal2020 10th Annual Computing and Communication Workshop and Conferenceen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectsqueeze-and-excitation squeezenext architectureen_US
dc.subjectconvolution neural networksen_US
dc.subjectdeep neural networksen_US
dc.titleSqueeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deploymenten_US
dc.typeConference proceedingsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chappa2020Squeeze.pdf
Size:
388.96 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: