An efficient 3D topology optimization code written in Matlab

Date
2015-06
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

This paper presents an efficient and compact Matlab code to solve three-dimensional topology optimization problems. The 169 lines comprising this code include finite element analysis, sensitivity analysis, density filter, optimality criterion optimizer, and display of results. The basic code solves minimum compliance problems. A systematic approach is presented to easily modify the definition of supports and external loads. The paper also includes instructions to define multiple load cases, active and passive elements, continuation strategy, synthesis of compliant mechanisms, and heat conduction problems, as well as the theoretical and numerical elements to implement general non-linear programming strategies such as SQP and MMA. The code is intended for students and newcomers in the topology optimization. The complete code is provided in Appendix C and it can be downloaded from http://​top3dapp.​com.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Liu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175-1196.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Structural and Multidisciplinary Optimization
Rights
IUPUI Open Access Policy
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}