Capillary zone electrophoresis-tandem mass spectrometry with activated ion electron transfer dissociation for large-scale top-down proteomics

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-12
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer
Abstract

Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as an efficient approach for top-down proteomics recently for its high-capacity separation and highly sensitive detection of proteoforms. However, the commonly used collision-based dissociation methods often cannot provide extensive fragmentation of proteoforms for thorough characterization. Activated ion electron transfer dissociation (AI-ETD), that combines infrared photoactivation concurrent with ETD, has shown better performance for proteoform fragmentation than higher energy-collisional dissociation (HCD) and standard ETD. Here, we present the first application of CZE-AI-ETD on an Orbitrap Fusion Lumos mass spectrometer for large-scale top-down proteomics of Escherichia coli (E. coli) cells. CZE-AI-ETD outperformed CZE-ETD regarding proteoform and protein identifications (IDs). CZE-AI-ETD reached comparable proteoform and protein IDs with CZE-HCD. CZE-AI-ETD tended to generate better expectation values (E values) of proteoforms than CZE-HCD and CZE-ETD, indicating a higher quality of MS/MS spectra from AI-ETD respecting the number of sequence-informative fragment ions generated. CZE-AI-ETD showed great reproducibility regarding the proteoform and protein IDs with relative standard deviations less than 4% and 2% (n = 3). Coupling size exclusion chromatography (SEC) to CZE-AI-ETD identified 3028 proteoforms and 387 proteins from E. coli cells with 1% spectrum level and 5% proteoform-level false discovery rates. The data represents the largest top-down proteomics dataset using the AI-ETD method so far. Single-shot CZE-AI-ETD of one SEC fraction identified 957 proteoforms and 253 proteins. N-terminal truncations, signal peptide cleavage, N-terminal methionine removal, and various post-translational modifications including protein N-terminal acetylation, methylation, S-thiolation, disulfide bonds, and lysine succinylation were detected.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
McCool EN, Lodge JM, Basharat AR, Liu X, Coon JJ, Sun L. Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics. J Am Soc Mass Spectrom. 2019;30(12):2470-2479. doi:10.1007/s13361-019-02206-6
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of the American Society for Mass Spectrometry
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}