Carbamazepine Potentiates the Effectiveness of Morphine in a Rodent Model of Neuropathic Pain

Date
2014-09-15
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Public Library of Science
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Approximately 60% of morphine is glucuronidated to morphine-3-glucuronide (M3G) which may aggravate preexisting pain conditions. Accumulating evidence indicates that M3G signaling through neuronal Toll-like receptor 4 (TLR4) may be central to this proalgesic signaling event. These events are known to include elevated neuronal excitability, increased voltage-gated sodium (NaV) current, tactile allodynia and decreased opioid analgesic efficacy. Using an in vitro ratiometric-based calcium influx analysis of acutely dissociated small and medium-diameter neurons derived from lumbar dorsal root ganglion (DRG), we observed that M3G-sensitive neurons responded to lipopolysaccharide (LPS) and over 35% of these M3G/LPS-responsive cells exhibited sensitivity to capsaicin. In addition, M3G-exposed sensory neurons significantly increased excitatory activity and potentiated NaV current as measured by current and voltage clamp, when compared to baseline level measurements. The M3G-dependent excitability and potentiation of NaV current in these sensory neurons could be reversed by the addition of carbamazepine (CBZ), a known inhibitor of several NaV currents. We then compared the efficacy between CBZ and morphine as independent agents, to the combined treatment of both drugs simultaneously, in the tibial nerve injury (TNI) model of neuropathic pain. The potent anti-nociceptive effects of morphine (5 mg/kg, i.p.) were observed in TNI rodents at post-injury day (PID) 7-14 and absent at PID21-28, while administration of CBZ (10 mg/kg, i.p.) alone failed to produce anti-nociceptive effects at any time following TNI (PID 7-28). In contrast to either drug alone at PID28, the combination of morphine and CBZ completely attenuated tactile hyperalgesia in the rodent TNI model. The basis for the potentiation of morphine in combination with CBZ may be due to the effects of a latent upregulation of NaV1.7 in the DRG following TNI. Taken together, our observations demonstrate a potential therapeutic use of morphine and CBZ as a combinational treatment for neuropathic pain.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Due MR, Yang XF, Allette YM, et al. Carbamazepine potentiates the effectiveness of morphine in a rodent model of neuropathic pain. PLoS One. 2014;9(9):e107399. Published 2014 Sep 15. doi:10.1371/journal.pone.0107399
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
PLoS One
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}