Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy

dc.contributor.authorKinnun, Jacob A.
dc.contributor.authorMallikarjunaiah, K. J.
dc.contributor.authorPetrache, Horia I.
dc.contributor.authorBrown, Michael F.
dc.contributor.departmentDepartment of Physics, School of Scienceen_US
dc.date.accessioned2017-05-01T19:16:54Z
dc.date.available2017-05-01T19:16:54Z
dc.date.issued2015-01
dc.description.abstractThis article reviews the application of solid-state ²H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state ²H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of ²H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state ²H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationKinnun, J. J., Mallikarjunaiah, K. J., Petrache, H. I., & Brown, M. F. (2015). Area Per Lipid and Elastic Deformation of Membranes: Atomistic View From Solid-State Deuterium NMR Spectroscopy. Biochimica et Biophysica Acta, 1848(1 Pt B), 246–259. http://doi.org/10.1016/j.bbamem.2014.06.004en_US
dc.identifier.urihttps://hdl.handle.net/1805/12387
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.bbamem.2014.06.004en_US
dc.relation.journalBiochimica et Biophysica Acta (BBA) - Biomembranesen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectArea per lipiden_US
dc.subjectLipid–protein interactionen_US
dc.subjectMolecular dynamicsen_US
dc.subjectOrder parameteren_US
dc.subjectOsmotic pressureen_US
dc.subjectSolid-state NMRen_US
dc.titleElastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopyen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms605927.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:
Main Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: