Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications

dc.contributor.authorEkanayaka, Thilini K.
dc.contributor.authorHao, Guanhua
dc.contributor.authorMosey, Aaron
dc.contributor.authorDale, Ashley S.
dc.contributor.authorJiang, Xuanyuan
dc.contributor.authorYost, Andrew J.
dc.contributor.authorSapkota, Keshab R.
dc.contributor.authorWang, George T.
dc.contributor.authorZhang, Jian
dc.contributor.authorN’Diaye, Alpha T.
dc.contributor.authorMarshall, Andrew
dc.contributor.authorCheng, Ruihua
dc.contributor.authorNaeemi, Azad
dc.contributor.authorXu, Xiaoshan
dc.contributor.authorDowben, Peter A.
dc.contributor.departmentPhysics, School of Scienceen_US
dc.date.accessioned2022-08-10T17:16:53Z
dc.date.available2022-08-10T17:16:53Z
dc.date.issued2021-03
dc.description.abstractNonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationEkanayaka, T. K., Hao, G., Mosey, A., Dale, A. S., Jiang, X., Yost, A. J., Sapkota, K. R., Wang, G. T., Zhang, J., N’Diaye, A. T., Marshall, A., Cheng, R., Naeemi, A., Xu, X., & Dowben, P. A. (2021). Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications. Magnetochemistry, 7(3), 37. https://doi.org/10.3390/magnetochemistry7030037en_US
dc.identifier.issn2312-7481en_US
dc.identifier.urihttps://hdl.handle.net/1805/29751
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/magnetochemistry7030037en_US
dc.relation.journalMagnetochemistryen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePublisheren_US
dc.subjectmolecular devicesen_US
dc.subjectmolecular multiferroicsen_US
dc.subjectnonvolatile memoryen_US
dc.titleNonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applicationsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ekanayaka2021Nonvolatile-CCBY.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: