Deep Learning Algorithm for the Confirmation of Mucosal Healing in Crohn’s Disease, Based on Confocal Laser Endomicroscopy Images

If you need an accessible version of this item, please submit a remediation request.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Background and Aims: Mucosal healing (MH) is associated with a stable course of Crohn’s disease (CD) which can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator’s errors and automate assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish between normal and inflamed colonic mucosa from CLE images.

Methods: The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented by the histopathological evaluation. The dataset was randomly split in two distinct training and testing datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images. Results: CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic curves of 0.98. Conclusions: Using machine learning algorithms on CLE images can successfully differentiate between inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Udristoiu, A. L., Stefanescu, D., Gruionu, G., Gruionu, L. G., Iacob, A. V., Karstensen, J. G., Vilman, P., & Saftoiu, A. (2021). Deep Learning Algorithm for the Confirmation of Mucosal Healing in Crohn’s Disease, Based on Confocal Laser Endomicroscopy Images. Journal of Gastrointestinal and Liver Diseases, 30(1), Article 1. https://doi.org/10.15403/jgld-3212
ISSN
1842-1121, 1841-8724
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Gastrointestinal and Liver Diseases
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}