Ontogeny of hallucal metatarsal rigidity and shape in the rhesus monkey (Macaca mulatta) and chimpanzee (Pan troglodytes)

dc.contributor.authorPatel, Biren A.
dc.contributor.authorOrgan, Jason M.
dc.contributor.authorJashashvili, Tea
dc.contributor.authorBui, Stephanie H.
dc.contributor.authorDunsworth, Holly M.
dc.contributor.departmentAnatomy and Cell Biology, IU School of Medicineen_US
dc.date.accessioned2019-07-02T18:51:41Z
dc.date.available2019-07-02T18:51:41Z
dc.date.issued2018-01
dc.description.abstractLife history variables including the timing of locomotor independence, along with changes in preferred locomotor behaviors and substrate use during development, influence how primates use their feet throughout ontogeny. Changes in foot function during development, in particular the nature of how the hallux is used in grasping, can lead to different structural changes in foot bones. To test this hypothesis, metatarsal midshaft rigidity [estimated from the polar second moment of area (J) scaled to bone length] and cross-sectional shape (calculated from the ratio of maximum and minimum second moments of area, Imax /Imin ) were examined in a cross-sectional ontogenetic sample of rhesus macaques (Macaca mulatta; n = 73) and common chimpanzees (Pan troglodytes; n = 79). Results show the hallucal metatarsal (Mt1) is relatively more rigid (with higher scaled J-values) in younger chimpanzees and macaques, with significant decreases in relative rigidity in both taxa until the age of achieving locomotor independence. Within each age group, Mt1 rigidity is always significantly higher in chimpanzees than macaques. When compared with the lateral metatarsals (Mt2-5), the Mt1 is relatively more rigid in both taxa and across all ages; however, this difference is significantly greater in chimpanzees. Length and J scale with negative allometry in all metatarsals and in both species (except the Mt2 of chimpanzees, which scales with positive allometry). Only in macaques does Mt1 midshaft shape significantly change across ontogeny, with older individuals having more elliptical cross-sections. Different patterns of development in metatarsal diaphyseal rigidity and shape likely reflect the different ways in which the foot, and in particular the hallux, functions across ontogeny in apes and monkeys.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationPatel, B. A., Organ, J. M., Jashashvili, T., Bui, S. H., & Dunsworth, H. M. (2018). Ontogeny of hallucal metatarsal rigidity and shape in the rhesus monkey (Macaca mulatta) and chimpanzee (Pan troglodytes). Journal of anatomy, 232(1), 39–53. doi:10.1111/joa.12720en_US
dc.identifier.urihttps://hdl.handle.net/1805/19816
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1111/joa.12720en_US
dc.relation.journalJournal of Anatomyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectHalluxen_US
dc.subjectApeen_US
dc.subjectMonkeyen_US
dc.subjectClimbingen_US
dc.subjectGraspingen_US
dc.subjectCross-sectional geometryen_US
dc.titleOntogeny of hallucal metatarsal rigidity and shape in the rhesus monkey (Macaca mulatta) and chimpanzee (Pan troglodytes)en_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms905331.pdf
Size:
602.42 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: