Ventilatory Responsiveness during Exercise and Performance Impairment in Acute Hypoxia

dc.contributor.authorConstantini, Keren
dc.contributor.authorBouillet, Anna C.
dc.contributor.authorWiggins, Chad C.
dc.contributor.authorMartin, Bruce J.
dc.contributor.authorChapman, Robert F.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2022-08-18T16:35:38Z
dc.date.available2022-08-18T16:35:38Z
dc.date.issued2021-02-01
dc.description.abstractIntroduction: An adequate increase in minute ventilation to defend arterial oxyhemoglobin saturation (SpO2) during hypoxic exercise is commonly viewed as an important factor contributing to large inter-individual variations in the degree of exercise performance impairment in hypoxia. Although the hypoxic ventilatory response (HVR) could provide insight into the underpinnings of such impairments, it is typically measured at rest under isocapnic conditions. Thus, we aimed to determine whether 1) HVR at rest and during exercise are similar and 2) exercise HVR is related to the degree of impairment in cycling time trial (TT) performance from normoxia to acute hypoxia (∆TT). Methods: Sixteen endurance-trained men (V˙O2peak, 62.5 ± 5.8 mL·kg-1·min-1) performed two poikilocapnic HVR tests: one during seated rest (HVRREST) and another during submaximal cycling (HVREX). On two separate visits, subjects (n = 12) performed a 10-km cycling TT while breathing either room air (FiO2 = 0.21) or hypoxic gas mixture (FiO2 = 0.16) in a randomized order. Results: HVREX was significantly (P < 0.001) greater than HVRREST (1.52 ± 0.47 and 0.22 ± 0.13 L·min-1·%SpO2-1, respectively), and these measures were not correlated (r = -0.16, P = 0.57). ∆TT was not correlated with HVRREST (P = 0.70) or HVREX (P = 0.54), but differences in ventilation and end-tidal CO2 between hypoxic and normoxic TT and the ventilatory equivalent for CO2 during normoxic TT explained ~85% of the variance in performance impairment in acute hypoxia (P < 0.01). Conclusion: We conclude that 1) HVR is not an appropriate measure to predict the exercise ventilatory response or performance impairments in acute hypoxia and 2) an adequate and metabolically matched increase in exercise ventilation, but not the gain in the ventilatory response to hypoxia, is essential for mitigating hypoxia-induced impairments in endurance cycling performance.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationConstantini K, Bouillet AC, Wiggins CC, Martin BJ, Chapman RF. Ventilatory Responsiveness during Exercise and Performance Impairment in Acute Hypoxia. Med Sci Sports Exerc. 2021;53(2):295-305. doi:10.1249/MSS.0000000000002466en_US
dc.identifier.urihttps://hdl.handle.net/1805/29827
dc.language.isoen_USen_US
dc.publisherWolters Kluweren_US
dc.relation.isversionof10.1249/MSS.0000000000002466en_US
dc.relation.journalMedicine & Science in Sports & Exerciseen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectPeripheral Chemoresponsivenessen_US
dc.subjectArterial Oxyhemoglobin Saturationen_US
dc.subjectAltitudeen_US
dc.subjectCyclingen_US
dc.subjectAthletesen_US
dc.subjectExerciseen_US
dc.titleVentilatory Responsiveness during Exercise and Performance Impairment in Acute Hypoxiaen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1692085.pdf
Size:
741.11 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: