Energy-Efficient and Robust QoS Control for Wireless Sensor Networks Using the Extended Gur Game

Date
2025-01-25
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
MDPI
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Outdoor wireless sensor networks (WSNs) operate autonomously in dynamic and unattended real-world environments, where sensor nodes are typically powered by their batteries. In hash outdoor settings, such as mountainous regions or underwater locations, recharging or replacing sensor node batteries is particularly challenging. For these WSN deployments, ensuring quality of service (QoS) control while conserving energy is crucial. This paper presents a novel QoS control algorithm for WSNs, built on extensions to the Gur game framework. The proposed approach not only enhances QoS performance compared to existing Gur game-based WSN control algorithms but also addresses their fundamental energy consumption challenges, enabling sustainable communication and extended network lifetimes. We evaluate the approach through comprehensive TinyOS-based WSN simulations and comparisons with existing algorithms. The results demonstrate that our approach, referred to as the robust Gur game, significantly enhances QoS control and achieves a 27.33% improvement in energy efficiency over the original Gur game and shuffle algorithms, showcasing the significant benefits of the proposed method.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhong X, Liang Y, Li Y. Energy-Efficient and Robust QoS Control for Wireless Sensor Networks Using the Extended Gur Game. Sensors (Basel). 2025;25(3):730. Published 2025 Jan 25. doi:10.3390/s25030730
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Sensors
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}