Dissecting the roles of ROCK isoforms in stress-induced cell detachment

Date
2013
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Taylor & Francis
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Shi J, Surma M, Zhang L, Wei L. Dissecting the roles of ROCK isoforms in stress-induced cell detachment. Cell Cycle. 2013;12(10):1492-1500. doi:10.4161/cc.24699
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cell Cycle
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}