The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase's phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-haemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Jeong DW, Cho H, Jones MB, et al. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol. 2012;86(2):331-348. doi:10.1111/j.1365-2958.2012.08198.x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Molecular Microbiology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}