Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail: Activation-dependent regulation of associations with talin and alpha-actinin
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Circulating leukocytes are nonadherent but bind tightly to endothelial cells following activation. The increased avidity of leukocyte integrins for endothelial ligands following activation is regulated, in part, by interaction of the beta2 subunit cytoplasmic tail with the actin cytoskeleton. We propose a mechanism to explain how tethering of the actin cytoskeleton to leukocyte integrins is regulated. In resting leukocytes, beta2 integrins are constitutively linked to the actin cytoskeleton via the protein talin. Activation of cells induces proteolysis of talin and dissociation from the beta2 tail. This phase is transient, however, and is followed by reattachment of actin filaments to integrins that is mediated by the protein alpha-actinin. The association of alpha-actinin with integrins may stabilize the cytoskeleton and promote firm adhesion to and migration across the endothelium. Glutathione S-transferase-beta2 tail fusion protein/mutagenesis experiments suggest that the affinity of alpha-actinin binding to the beta2 tail is regulated by a change in the conformation of the tail that unmasks a cryptic alpha-actinin binding domain. Positive and inhibitory domains within the beta2 tail regulate alpha-actinin binding: a single 11-amino acid region (residues 736-746) is necessary and sufficient for alpha-actinin binding, and a regulatory domain between residues 748-762 inhibits constitutive association of the beta2 tail with alpha-actinin.