Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease

If you need an accessible version of this item, please submit a remediation request.
Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Introduction: Alzheimer's disease (AD), the leading cause of dementia worldwide, represents a human and financial impact for which few effective drugs exist to treat the disease. Advances in molecular imaging have enabled assessment of cerebral glycolytic metabolism, and network modeling of brain region have linked to alterations in metabolic activity to AD stage.

Methods: We performed 18 F-FDG positron emission tomography (PET) imaging in 4-, 6-, and 12-month-old 5XFAD and littermate controls (WT) of both sexes and analyzed region data via brain metabolic covariance analysis.

Results: The 5XFAD model mice showed age-related changes in glucose uptake relative to WT mice. Analysis of community structure of covariance networks was different across age and sex, with a disruption of metabolic coupling in the 5XFAD model.

Discussion: The current study replicates clinical AD findings and indicates that metabolic network covariance modeling provides a translational tool to assess disease progression in AD models.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Chumin EJ, Burton CP, Silvola R, et al. Brain metabolic network covariance and aging in a mouse model of Alzheimer's disease. Alzheimers Dement. 2024;20(3):1538-1549. doi:10.1002/alz.13538
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Alzheimer's & Dementia
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}