A Naïve Bayesian Classifier in Categorical Uncertain Data Streams

dc.contributor.authorGe, Jiaqi
dc.contributor.authorXia, Yuni
dc.contributor.authorWang, Jian
dc.contributor.departmentDepartment of Computer & Information Science, School of Scienceen_US
dc.date.accessioned2015-12-30T16:35:49Z
dc.date.available2015-12-30T16:35:49Z
dc.date.issued2014-10
dc.description.abstractThis paper proposes a novel naïve Bayesian classifier in categorical uncertain data streams. Uncertainty in categorical data is usually represented by vector valued discrete pdf, which has to be carefully handled to guarantee the underlying performance in data mining applications. In this paper, we map the probabilistic attribute to deterministic points in the Euclidean space and design a distance based and a density based algorithms to measure the correlations between feature vectors and class labels. We also devise a new pre-binning approach to guarantee bounded computation and memory cost in uncertain data streams classification. Experimental results in real uncertain data streams prove that our density-based naive classifier is efficient, accurate, and robust to data uncertainty.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationGe, J., Xia, Y., & Wang, J. (2014). A Naive Bayesian classifier in categorical uncertain data streams. In 2014 International Conference on Data Science and Advanced Analytics (DSAA) (pp. 392–398). http://doi.org/10.1109/DSAA.2014.7058102en_US
dc.identifier.urihttps://hdl.handle.net/1805/7856
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/DSAA.2014.7058102en_US
dc.relation.journal2014 International Conference on Data Science and Advanced Analytics (DSAA)en_US
dc.sourceAuthoren_US
dc.subjectdata streams classificationen_US
dc.subjectcategorical dataen_US
dc.subjectuncertaintyen_US
dc.subjectnaïve Bayesian classifieren_US
dc.titleA Naïve Bayesian Classifier in Categorical Uncertain Data Streamsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ge_2014_A-Naive.pdf
Size:
449.99 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: