"Wired," yet intoxicated: modeling binge caffeine and alcohol co-consumption in the mouse

Date
2014-08
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley Blackwell (Blackwell Publishing)
Abstract

BACKGROUND: The combination of highly caffeinated "energy drinks" with alcohol (ethanol [EtOH]) has become popular among young adults and intoxication via such beverages has been associated with an elevated risk for harmful behaviors. However, there are discrepancies in the human literature regarding the effect of caffeine on alcohol intoxication, perhaps due to confounding factors such as personality type, expectancy, and history of exposure. Animal models of co-exposure are resistant to such issues; however, the consequences of voluntary co-consumption have been largely ignored in the animal literature. The primary goal of this work was to characterize a mouse model of binge caffeine and EtOH co-consumption employing the limited access "Drinking-in-the-Dark" (DID) paradigm. METHODS: Caffeine was added to a 20% alcohol solution via DID. Alcohol/caffeine intake, locomotor behavior, ataxia, anxiety-like behavior, and cognitive function were evaluated as a consequence of co-consumption in adult male C57BL/6J mice. RESULTS: Caffeine did not substantially alter binge alcohol intake or resultant blood EtOH concentrations (BECs), nor did it alter alcohol's anxiolytic effects on the elevated plus maze or cognitive-interfering effects in a novel object-recognition task. However, no evidence of alcohol-induced sedation was observed in co-consumption groups that instead demonstrated a highly stimulated state similar to that of caffeine alone. The addition of caffeine was also found to mitigate alcohol-induced ataxia. CONCLUSIONS: Taken together, our mouse model indicates that binge co-consumption of caffeine and alcohol produces a stimulated, less ataxic and anxious, as well as cognitively altered state; a state that could be of great public health concern. These results appear to resemble the colloquially identified "wide awake drunk" state that individuals seek via consumption of such beverages. This self-administration model therefore offers the capacity for translationally valid explorations of the neurobiological consequences of binge co-consumption to assess the public health risk of this drug combination.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Fritz, B. M., Companion, M., & Boehm, S. L. (2014). “Wired”, yet intoxicated: Modeling binge caffeine and alcohol co-consumption in the mouse. Alcoholism, Clinical and Experimental Research, 38(8), 2269–2278. http://doi.org/10.1111/acer.12472
ISSN
1530-0277
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Alcoholism, Clinical and Experimental Research
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}