On the Supersymmetric XXX Spin Chains Associated to gl1|1

dc.contributor.authorLu, Kang
dc.contributor.authorMukhin, Evgeny
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2023-02-24T18:07:29Z
dc.date.available2023-02-24T18:07:29Z
dc.date.issued2021-09
dc.description.abstractYangian modules. It follows that there exists a bijection between common eigenvectors (up to proportionality) of the algebra of Hamiltonians and monic divisors of an explicit polynomial written in terms of the Drinfeld polynomials. In particular our result implies that each common eigenspace of the algebra of Hamiltonians has dimension one. We also give dimensions of the generalized eigenspaces. We show that when the tensor product is irreducible, then all eigenvectors can be constructed using Bethe ansatz. We express the transfer matrices associated to symmetrizers and anti-symmetrizers of vector representations in terms of the first transfer matrix and the center of the Yangian.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationLu, K., & Mukhin, E. (2021). On the Supersymmetric XXX Spin Chains Associated to $$\mathfrak {gl}_{1|1}$$. Communications in Mathematical Physics, 386(2), 711–747. https://doi.org/10.1007/s00220-021-04155-2en_US
dc.identifier.urihttps://hdl.handle.net/1805/31460
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00220-021-04155-2en_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectsupersymmetric spin chainsen_US
dc.subjectBethe ansatzen_US
dc.subjectrational difference operatorsen_US
dc.titleOn the Supersymmetric XXX Spin Chains Associated to gl1|1en_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lu2021OntheSupersymmetric-AAM.pdf
Size:
419.68 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: